

$\boldsymbol{n} \mid \boldsymbol{a} \mid \mid \boldsymbol{b} \mid \sin \theta$

Where θ is the angle between \boldsymbol{a} and \boldsymbol{b} . Where n is an angle perpedicular to \boldsymbol{a} and \boldsymbol{b} . $\boldsymbol{n} = \bot(||\boldsymbol{a}|| ||\boldsymbol{b}||)$

The angle between **u** and **v**.

A wedge product.

Cross Product

The angle will be in radians

With the notation: $a \times b$

 $\cos^{-1}(\|\boldsymbol{u}\| \cdot \|\boldsymbol{v}\|)$ $\cos^{-1}\left(\frac{u \cdot v}{|u| |v|}\right)$

The angle will be in radians.

 $||\mathbf{a}|| ||\mathbf{b}|| \cos\theta$

Their magnitudes multiplied, scaled by the cos of the angle between the vectors.

Dot Product, or
Inner Product, or
Scalar Product

The angle between *u* and *v*.

The angle will be in radians

 $\boldsymbol{a}_{\mathrm{x}}\boldsymbol{b}_{\mathrm{x}} + \boldsymbol{a}_{\mathrm{y}}\boldsymbol{b}_{\mathrm{y}} + \boldsymbol{a}_{\mathrm{z}}\boldsymbol{b}_{\mathrm{z}}$

means the matrix cannot

be inverted.

If each colum represented a vector that represented an edge of a box/(hyper)cube, it represents what the volume of that cube would be.

(For matrices representing more than 3 dimensions, technically it's the *hyper*-volume)

The determinant will be zero.

The volume inside the matrix.

i.e., if each colum represented a vector that represented an edge of a box/(hyper)cube, it represents what the volume of that cube would be.

(For matrices representing more than 3 dimensions, technically it's the *hyper*-volume)

 $\mathbf{S} u_1 v_2 - u_2 v_1$

The determinant of matrix **A**.

 $u_1(v_2v_3 - v_3w_2) + u_2(v_3w_1 - v_1w_3) + u_3(v_1w_2 - v_2w_1)$

m rows *n* columns

The determinant of matrix **A**.

The **inverse** of matrix **A**.

m rows *n* columns

The matrix will be "corrected" so that:

all 3 orientation vectors are perpendicular to each other
all 3 orientation vectors are unit length.

(Note the pattern more than the actual values)

The **transpose** of matrix **A**.

All 3 orientation vectors are not perpendicular to each other.

It can also be said the matrix is **not** orthogonal

 $-20x^7 + 70x^6 - 84x^5 + 35x^4$

 $3x^2 - 2x^3$

 $6x^5 - 15x^4 + 10x^3$

S A tensor.

1/2 - sin(asin(1-2x)/3)

It involves a formula where a variable is raised to the **third power** - as the highest power. 1) A vector 2) A matrix

Nothing, they're equivalent.

It involves a formula where a variable is raised to the **second power** - as the highest power.

The volume of the parallelepiped formed by **a**, **b** and **c**.

Which is also their determinant

The volume of the parallelepiped formed by **a**, **b** and **c**.

Which is also their determinant aka, The Tripple Product

Scalar tripple product.

Their scalar tripple product divided by 6

Operation is commutative, order of vectors does not matter.

The magnitude of the vector.

AKA: The Euclidean length

The magnitude squared of v. |v| |v| $|v|^2$

The normalized value of v.

AKA: The vector magnitude formula

AKA: The unit vector of v.

AKA: The unit vector of v.

What value multiplier converts degrees to radians ?	How many units of pi (π) represents 360 degrees?
What value multiplier converts radian to degrees?	Given vectors <i>a</i> and <i>b</i> with elements x,y,z, give the formula for a <i>cross product</i> .
Given 3D vectors a and b what operation calculates the area a triangle with these vectors as the edges?	When using the cross product, if $a \times b = v$, what is the value of $b \times a = ?$ 3D Math
Given vectors <i>a</i> and <i>b</i> what is the identity of the magnitude of their cross product ?	

The cross product is not commutative.

Where \times is a cross product. $(|a \times b|$ returns the area of the parallelogram)

The area of the parallelpiped formed by \boldsymbol{a} and \boldsymbol{b} . OR $|\boldsymbol{a}| |\boldsymbol{b}| \sin \theta$

(Where θ is the angle between \boldsymbol{a} and \boldsymbol{b} .)