What does Who is Hooke's Law Hooke's Law describe? named after? Simulations Simulations For lighting models, A BDRF is formulated as: What does $f_r(\omega_i, \omega_r)$ **BDF** Describe the parameters stand for. and output value. Simulations Simulations A physically based BRDF has For lighting models, these 3 properties: $f_{\rm r}(\omega_{\rm i}, \omega_{\rm r}) \ge 0$ What does $f_{\rm r}(\omega_{\rm i}, \omega_{\rm r}) = f_{\rm r}(\omega_{\rm r}, \omega_{\rm i})$ BRDF stand for. $\forall \omega_{i}, \int_{\Omega} f_{r}(\omega_{i}, \omega_{r}) \cos \theta_{r} d\omega_{r} \leq 1$ What do they mean? Simulations For lighting models, For lighting models, What does What does **BSDF BSSTDF** stand for. stand for. Simulations Simulations For lighting models, For lighting models, what are the What does two categories of materials **BTDF** that define a material's stand for. metalness? Simulations Simulations

Robert Hook (1635 - 1703)

AKA: Isaac Newton's arch-nemesis!

 ω_i is the incomming light direction.. ω_r is the outgoing light direction.

The output if the amount of light reflected. (This will be a value between [0, 1].)

The mathematical behaviour of **spring systems**?

A combination of the BRDF and BTDF.

Bidirectional Reflectance Distribution Function

There's no such thing as negative light. Helmholtz reciprocity. (Reflections are reversible.) Convervation of energy.

Bidirectional

Bidirectional Scattering-Surface Transmittance Distribution Function

Scattering Distribution Function

Similar to the BTDF but with subsurface scattering.

Bidirectional Transmittance Distribution Function A superset and generalization of both the BRDF and BTDF.

Conductors AND Dielectrics

AKA: Metals vs Insulators. (Semiconductors are usually ignored)

For lighting models, what does microfacet theory describe?	For lighting models, What does SVBRDF stand for.
For lighting models, What does the term Transmission refer to?	What is the name of the equations that deeply model: • Classical electromanetism • Classical optics • Electrical circuts ?
What does the Navier-Stokes formula describe?	What formula models the behaviour of fluids, in-depth?
What is the difference in focus between the sciences of Radiometry VS Photometry Simulations	What is the IOR of air?
What is the IOR of diamond?	The formula for calculating the index of refraction for a material is: $n = \frac{C}{V}$ Simulations

Spatially Varying Bidirectional Reflectance Distribution Function

The Maxwell Equations

How microscopic texture qualities of a material affect how it looks at human scale.

When light travels through a medium.

Such as light passing through glass.

Navier-Stokes equation.

It mathematically models, in-depth, the behaviour of fluids.

1.000277 at STP (Credit for "very slightly over 1.0")

STP: Standard temp & pressure

Radiometry is an **objective** science, Photometry is more focused on human **perception**.

n =Index of Refraction c = Speed of Light in vacuum v = Medium's Phase Velocity

Where *c* is 299,792,458 m/s Where *v* the speed of light in the medium.

2.417

What is the IOR of fused silica? (it's a form of pure glass)	What is the IOR of pyrex? (a borosilicate glass)
IOR: Index of Refraction	IOR: Index of Refraction
What is the IOR of fused silica? (it's a form of pure glass)	What is the IOR of a vaccum ?
IOR: Index of Refraction	IOR: Index of Refraction
What is the IOR of water at ~20°c2	Describe Total Internal Reflection
IOR: Index of Refraction	Simulations
What is it called when a light path experiences an angle of refraction that bounces it back into the same medium?	What does Snell's Law describe?

When a light path experiences a high angle of refraction that bends the path back into the original medium. **1.333**

How a path of light will bend as it transmits from one medium into another.

Total Internal Reflection

AKA: TIR

A cone, similar to a 2D angle, but representing an angle in 3D space. Snell's Law

Beer-Lambert Law

Also known a "photon mole".

An approximation for how the wavelength of light changes when passing through mediums with different IORs.

How light is absorbed & attenuated as it transmits though a medium.

S Photon

Helmholtz Reciprocity

Flux

How **reflective** a **surface** material is based on the **angle** light hits it.

Hooke's Law